4.6 Article

Involvement of the histone deacetylase SIRT1 in chicken ovalbumin upstream promoter transcription factor (COUP-TF)-interacting protein 2-mediated transcriptional repression

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 278, 期 44, 页码 43041-43050

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M307477200

关键词

-

资金

  1. NIEHS NIH HHS [P30 ES000210-35, P30 ES000210, ES00210] Funding Source: Medline
  2. NIGMS NIH HHS [R01 GM060852-02, R01 GM060852] Funding Source: Medline
  3. PHS HHS [EM60852] Funding Source: Medline

向作者/读者索取更多资源

Chicken ovalbumin upstream promoter transcription factor (COUP-TF)-interacting proteins 1 and 2 (CTIP1 and CTIP2) enhance transcriptional repression mediated by COUP-TF II and have been implicated in hematopoietic cell development and malignancies. CTIP1 and CTIP2 are also sequence-specific DNA-binding proteins that repress transcription through direct, COUP-TF-independent binding to a GC-rich response element. CTIP1- and CTIP2-mediated transcriptional repression is insensitive to trichostatin A, an inhibitor of known class I and II histone deacetylases. However, chromatin immunoprecipitation assays revealed that expression of CTIP2 in mammalian cells resulted in deacetylation of histones H3 and/or H4 that were associated with the promoter region of a reporter gene. CTIP2-mediated transcriptional repression, as well as deacetylation of promoter-associated histones H3/H4 in CTIP2-transfected cells, was reversed by nicotinamide, an inhibitor of class III histone deacetylases such as the mammalian homologs of yeast Silent Information Regulator 2 (Sir2). The human homolog of yeast Sir2, SIRT1, was found to interact directly with CTIP2 and was recruited to the promoter template in a CTIP2-dependent manner. Moreover, SIRT1 enhanced the deacetylation of template-associated histones H3/H4 in CTIP2-transfected cells, and stimulated CTIP2-dependent transcriptional repression. Finally, endogenous SIRT1 and CTIP2 co-purified from Jurkat cell nuclear extracts in the context of a large (1-2 mDa) complex. These findings implicate SIRT1 as a histone H3/H4 deacetylase in mammalian cells and in transcriptional repression mediated by CTIP2.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据