4.5 Article

Attachment of periodontal ligament cells to chlorhexidine-loaded guided tissue regeneration membranes

期刊

JOURNAL OF PERIODONTOLOGY
卷 74, 期 11, 页码 1652-1659

出版社

AMER ACAD PERIODONTOLOGY
DOI: 10.1902/jop.2003.74.11.1652

关键词

Actinobacillus actinomycetemcomitans; chlorhexidine/therapeutic use; guided tissue regeneration; membranes; barrier; periodontal attachment; periodontal ligament; polytetrafluoroethylene/therapeutic use

向作者/读者索取更多资源

Background: Early exposure of a guided tissue regeneration (GTR) membrane in the oral cavity results in bacterial contamination, which may lead to failure or incomplete regeneration. Incorporation of antimicrobial agents in GTR membranes may be valuable to control membrane-associated infection during GTR therapy. The purpose of this study was to evaluate whether the incorporation of chlorhexidine into various GTR membranes improves the attachment of periodontal ligament cells in the presence of Actinobacillus actinomycetemcomitans. Methods: The possible effects of chlorhexidine on the viability of primary human periodontal ligament (PDL) cells were determined using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide (MTT), which measures cellular metabolic activity. An expanded polytetrafluoroethylene (ePTFE) membrane, glycolide fiber membrane, and collagen membrane were loaded with chlorhexidine and characterized. Attachment of PDL cells to the chlorhexidine-loaded membranes with or without A. actinomycetemcomitans was examined using scanning electron microscopy (SEM) analysis. Results: Relative cellular viability of PDL cells was reduced to approximately 50% when 15 mug/ml (0.0015%) of chlorhexidine was used. Chlorhexidine released from the coated GTR membranes inhibited the growth of A. actinomycetemcomitans. At the concentration used in this study, chlorhexidine incorporated into the GTR membranes did not interfere with the attachment of PDL cells. The inhibitory effects of A. actinomycetemcomitans on cellular attachment were reduced using chlorhexidine-loaded membranes, including ePTFE, glycolide fiber, and Collagen membranes. Conclusions: These results suggest that incorporation of chlorhexidine into GTR membranes is beneficial in reducing bacterial effects on cellular attachment. The future application of chlorhexidine-loaded membranes during GTR therapy may be of value.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据