4.6 Article

Physical properties of glass fiber reinforced polymer rebars in compression

期刊

JOURNAL OF COMPOSITES FOR CONSTRUCTION
卷 7, 期 4, 页码 363-366

出版社

ASCE-AMER SOC CIVIL ENGINEERS
DOI: 10.1061/(ASCE)1090-0268(2003)7:4(363)

关键词

concrete; reinforced; fiber reinforced polymers; compression strength; elasticity; structural materials; glass fibers

向作者/读者索取更多资源

Forty-five glass fiber reinforced polymer (GFRP) rebars were tested in compression to determine their ultimate strength and Young's modulus. The rebars (or C-bars), produced by Marshall Industries Composites, Inc., had an outside diameter of 15 mm (#15 rebar), and unbraced lengths varying from 50 to 380 mm. A compression test method was developed to conduct the experiments. Three failure modes, that are directly related to the unbraced length of the rebar, are identified as crushing, buckling, and combined buckling and crushing. The crushing region represents the failure mode a GFRP rebar would experience when confined in concrete under compression. The experimental results showed that the ultimate compressive strength of the #15 GFRP rebar failing by crushing is approximately 50% of the ultimate tensile strength. Based on a very limited number of tests, in which strain readings were acceptable, Young's modulus in compression was found to be approximately the same as in tension.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据