4.2 Article

Studies on effects of microbial transglutaminase on gluten proteins of wheat. I. Biochemical analysis

期刊

CEREAL CHEMISTRY
卷 80, 期 6, 页码 781-786

出版社

AMER ASSOC CEREAL CHEMISTS
DOI: 10.1094/CCHEM.2003.80.6.781

关键词

-

向作者/读者索取更多资源

The enzyme transglutaminase (TG) is known to have beneficial effects on breadmaking. However, only limited information is available on the structural changes of gluten proteins caused by TG treatment. The effect of TG has, therefore, been systematically studied by means of model peptides, suspensions of wheat flours and doughs. The treatment of synthetic peptides mimicking amino acid sequences of HMW subunits of glutenin with TG results in isopeptide bonds between glutamine and lysine residues. To study the effect on gluten proteins, different amounts of TG (0 to 900 mg enzyme protein per kg) were dissolved in a buffer and added to wheat flour. The flour suspensions were incubated and centrifuged and the residues were successively extracted with water, a salt solution, 60% aqueous ethanol (gliadin fraction) and SDS solution including a reducing agent (glutenin fraction). The characterization of the fractions by amino acid analysis, SDS-PAGE, gel permeation HPLC and reversed-phase HPLC has indicated that the quantity of extractable gliadins decreases by increasing TG amounts. Among gliadins, the omega5-type was affected to the greatest extent by the reduction of extractability, followed by the omega1,2, alpha- and gamma-types. The oligomeric portion of the gliadin fractions (HMW gliadin) was strongly reduced when flour was treated with 450 and 900 mg TG per kg of flour, respectively. In the first instance, the quantity of the glutenin fractions increased by the treatment of flour with 90 and, 450 mg TG per kg of flour, and significantly decreased by the treatment of flour with 900 mg TG per kg of flour. Parallel to an increase in TG concentration, the amounts of glutenin-bound omega-gliadins and HMW subunits were strongly reduced, whereas the LMW subunits reached a maximal amount after treatment with 450 mg TG per kg of flour. The insoluble residue was almost free of protein when flour was treated with lower amounts of TG. Higher amounts led to a great increase of protein in the residues. The effects of TG on doughs were similar to those of flour suspensions, but less strongly pronounced probably due to the lower water content of the dough system. Sequence analysis of peptides from a thermolytic digest of the insoluble residue revealed that HMW subunits of glutenin and alpha-gliadins were predominantly involved in cross-links formed by TG treatment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据