3.8 Article

Comparison of support vector machine and artificial neural network systems for drug/nondrug classification

向作者/读者索取更多资源

Support vector machine (SVM) and artificial neural network (ANN) systems were applied to a drug/nondrug classification problem as an example of binary decision problems in early-phase virtual compound filtering and screening. The results indicate that solutions obtained by SVM training seem to be more robust with a smaller standard error compared to ANN training. Generally, the SVM classifier yielded slightly higher prediction accuracy than ANN, irrespective of the type of descriptors used for molecule encoding, the size of the training data sets, and the algorithm employed for neural network training. The performance was compared using various different descriptor sets and descriptor combinations based on the 120 standard Ghose-Crippen fragment descriptors, a wide range of 180 different properties and physicochemical descriptors from the Molecular Operating Environment (MOE) package, and 225 topological pharmacophore (CATS) descriptors. For the complete set of 525 descriptors cross-validated classification by SVM yielded 82% correct predictions (Matthews cc = 0.63), whereas ANN reached 80% correct predictions (Matthews cc = 0.58). Although SVM outperformed the ANN classifiers with regard to overall prediction accuracy, both methods were shown to complement each other, as the sets of true positives, false positives (overprediction), true negatives, and false negatives (underprediction) produced by the two classifiers were not identical. The theory of SVM and ANN training is briefly reviewed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据