4.5 Article

Joint AVO inversion, wavelet estimation and noise-level estimation using a spatially coupled hierarchical Bayesian model

期刊

GEOPHYSICAL PROSPECTING
卷 51, 期 6, 页码 531-550

出版社

WILEY
DOI: 10.1046/j.1365-2478.2003.00390.x

关键词

-

向作者/读者索取更多资源

The main objective of the AVO inversion is to obtain posterior distributions for P-wave velocity, S-wave velocity and density from specified prior distributions, seismic data and well-log data. The inversion problem also involves estimation of a seismic wavelet and the seismic-noise level. The noise model is represented by a zero mean Gaussian distribution specified by a covariance matrix. A method for joint AVO inversion, wavelet estimation and estimation of the noise level is developed in a Bayesian framework. The stochastic model includes uncertainty of both the elastic parameters, the wavelet, and the seismic and well-log data. The posterior distribution is explored by Markov-chain Monte-Carlo simulation using the Gibbs' sampler algorithm. The inversion algorithm has been tested on a seismic line from the Heidrun Field with two wells located on the line. The use of a coloured seismic-noise model resulted in about 10% lower uncertainties for the P-wave velocity, S-wave velocity and density compared with a white-noise model. The uncertainty of the estimated wavelet is low. In the Heidrun example, the effect of including uncertainty of the wavelet and the noise level was marginal with respect to the AVO inversion results.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据