4.8 Article

Multiple length scale patterning of single-molecule magnets

向作者/读者索取更多资源

Controlling materials on multiple length scales is one of the most compelling issues in nanotechnology research today. Here we demonstrate that arrays of nanometer-sized aggregates, each made of a few hundred single-molecule magnets derived from Mn-12 complexes, can be patterned on large areas by self-organization assisted by stamps on a surface in a dewetting regime. The large length scale is imposed by the motif of the stamp protrusions, and the smaller length scales, viz., the size and distance of the molecular aggregates, are controlled by deposition and growth phenomena occurring in a volume confined beneath the protrusions by capillary forces. The method is general to a variety of molecular materials and substrates because repulsive, as opposed to specific, interactions are required. Our result hints at the possibility of sustainable patterning of single-molecule magnets for ultra-high-density magnetic storage and quantum computing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据