4.5 Article

Pyramiding and validation of quantitative trait locus (QTL) alleles determining resistance to barley stripe rust: Effects on adult plant resistance

期刊

CROP SCIENCE
卷 43, 期 6, 页码 2234-2239

出版社

CROP SCIENCE SOC AMER
DOI: 10.2135/cropsci2003.2234

关键词

-

类别

向作者/读者索取更多资源

The use of molecular and quantitative trait locus (QTL) analysis tools initially lent support to the idea that relatively few genetic factors were the principal determinants of complex traits, including quantitative resistance (QR) to plant diseases. However, there are concerns regarding bias in QTL estimation and reproducibility of QTL effects in different genetic backgrounds. We are interested in mapping determinants of QR, and pyramiding resistance alleles at QTL loci may lead to durable resistance as well as provide independent validation of QTL effects and estimation of QTL interactions. We used molecular marker information to validate effects of resistance alleles at three QTL conferring QR to barley stripe rust (caused by Puccinia striiformis West. f. sp. hordei). Two of the QTL [one on chromosome 4(4H) and one on chromosome 7(5H) ] trace to one parent, while another QTL on chromosome 5(1H) traces to a different parent. The pyramids of these QR alleles provide independent estimates of QTL effects, influence of genetic background on QTL effects, QTL X QTL interaction, and QTL X environment interaction. Our results validate QTL effect estimates, showing that a small number of QTL explained 94% of the genetic variation in trait expression in a new genetic background. Original QTL estimates were quantitatively biased, but that did not preclude the achievement of selection responses. We also confirmed the additive effects of the QTL alleles, as well as the consistent effects of QTL alleles across environments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据