4.4 Article

Mutagenesis of the conserved active-site tyrosine changes a retaining sialidase into an inverting sialidase

期刊

BIOCHEMISTRY
卷 42, 期 43, 页码 12682-12690

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bi035396g

关键词

-

向作者/读者索取更多资源

Mutagenesis of the conserved tyrosine (Y370) of the Micromonospora viridifaciens sialidase changes the mechanism of catalysis from retention of anomeric configuration to an unprecedented inverting mechanism in which water efficiently functions as the nucleophile. Three mutants, Y370A, Y370D, and Y370G, were produced recombinantly in Escherichia coli, and all are catalytically active against the activated substrate 4-methylumbelliferyl alpha-D-N-acetylneuraminide. The Y370D mutant was also shown to catalyze the hydrolysis of natural substrate analogues such as 3'-sialyllactose. A comparison of the pH-rate profiles for the wild-type and the Y370D mutant sialidase reveals no major differences, although with respect to the kinetic term k(cat)/K-m, an ionized form of the aspartate-370 enzyme is catalytically compromised. For the wild-type enzyme, the value of the Bronsted parameter beta(1g) on k(cat) is 0.02 +/- 0.03, while for the Y370D mutant sialidase beta(1g) = -0.55 +/- 0.03 for the substrates with bad leaving groups. Thus, for the wild-type enzyme, a nonchemical step(s) is rate-limiting, but for the tyrosine mutant cleavage of the glycosidic C-O bond is rate-determining. The Bronsted slopes derived for the kinetic parameter k(cat)/K-m display a similar trend (beta(1g) -0.30 +/- 0.04 and -0.74 +/- 0.04 for the wild-type and Y370D, respectively). These results reveal that the tyrosine residue lowers the activation free energy for cleavage of 6'-sialyllactose, a natural substrate analogue, by more than 24.9 kJ mol(-1). Evidence is presented that the mutant sialidases operate by a dissociative mechanism, and the wild-type enzyme operates by a concerted mechanism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据