4.8 Article

Structural and electronic properties of the layered LiNi0.5Mn0.5O2 lithium battery material

期刊

CHEMISTRY OF MATERIALS
卷 15, 期 22, 页码 4280-4286

出版社

AMER CHEMICAL SOC
DOI: 10.1021/cm031098u

关键词

-

向作者/读者索取更多资源

Computational studies based upon density functional theory (DFT) have been carried out on the LixNi0.5Mn0.5O2 system, a promising cathode material for rechargeable lithium batteries. Electronic structure calculations suggest that the nominal valence state distribution is given by the formula (LiNi0.5Mn0.5O2)-Mn-II-O-IV. Possible Ni-Mn cation ordering schemes in the layered structure have been examined including intralayer and interlayer configurations. The results on lithium deintercalation of LixNi0.5Mn0.5O2 indicate that the electrochemical behavior is linked to the oxidation of Ni2+. Our calculated cell voltage range as a function of lithium content W is compatible with electrochemical measurements that generally show sloping voltage profiles. The calculated Mn-O bond length shows relative invariance with Li extraction, whereas the Ni-O bond shortens significantly, which accords well with the available structural data.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据