4.8 Article

The birth of a quasiparticle in silicon observed in time-frequency space

期刊

NATURE
卷 426, 期 6962, 页码 51-54

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nature02044

关键词

-

向作者/读者索取更多资源

The concept of quasiparticles in solid-state physics is an extremely powerful tool for describing complex many-body phenomena in terms of single-particle excitations(1). Introducing a simple particle, such as an electron, hole or phonon, deforms a manybody system through its interactions with other particles. In this way, the added particle is 'dressed' or 'renormalized' by a self-energy cloud that describes the response of the many-body system, so forming a new entity - the quasiparticle. Using ultrafast laser techniques, it is possible to impulsively generate bare particles and observe their subsequent dressing by the many-body interactions ( that is, quasiparticle formation) on the time and energy scales governed by the Heisenberg uncertainty principle(2). Here we describe the coherent response of silicon to excitation with a 10-femtosecond (10(-14) s) laser pulse. The optical pulse interacts with the sample by way of the complex second-order nonlinear susceptibility to generate a force on the lattice driving coherent phonon excitation. Transforming the transient reflectivity signal into frequency - time space reveals interference effects leading to the coherent phonon generation and subsequent dressing of the phonon by electron - hole pair excitations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据