4.6 Article

Single-stranded DNA-binding proteins PURα and PURβ bind to a purine-rich negative regulatory element of the α-myosin heavy chain gene and control transcriptional and translational regulation of the gene expression -: Implications in the repression of α-myosin heavy chain during heart failure

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 278, 期 45, 页码 44935-44948

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M307696200

关键词

-

资金

  1. NHLBI NIH HHS [R0-1 HL68083] Funding Source: Medline

向作者/读者索取更多资源

The alpha-myosin heavy chain is a principal molecule of the thick filament of the sarcomere, expressed primarily in cardiac myocytes. The mechanism for its cardiac-restricted expression is not yet fully understood. We previously identified a purine-rich negative regulatory (PNR) element in the first intron of the gene, which is essential for its cardiac-specific expression (Gupta, M., Zak, R., Libermann, T. A., and Gupta, M. P. (1998) Mol. Cell. Biol. 18, 7243-7258). In this study we cloned and characterized muscle and non-muscle factors that bind to this element. We show that two single-stranded DNA-binding proteins of the PUR family, PURalpha and PURbeta, which are derived from cardiac myocytes, bind to the plus strand of the PNR element. In functional assays, PURalpha and PURbeta repressed alpha-myosin heavy chain (alpha-MHC) gene expression in the presence of upstream regulatory sequences of the gene. However, from HeLa cells an Ets family of protein, Ets-related protein (ERP), binds to double-stranded PNR element. The ERP.PNR complex inhibited the activity of the basal transcription complex from homologous as well as heterologous promoters in a PNR position-independent manner, suggesting that ERP acts as a silencer of alpha-MHC gene expression in non-muscle cells. We also show that PUR proteins are capable of binding to alpha-MHC mRNA and attenuate its translational efficiency. Furthermore, we show robust expression of PUR proteins in failing hearts where alpha-MHC mRNA levels are suppressed. Together, these results reveal that (i) PUR proteins participate in transcriptional as well as translational regulation of alpha-MHC expression in cardiac myocytes and (ii) ERP may be involved in cardiac-restricted expression of the alpha-MHC gene by preventing its expression in nonmuscle cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据