4.7 Article

Maximum likelihood trajectories from single molecule fluorescence resonance energy transfer experiments

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 119, 期 18, 页码 9920-9924

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1616511

关键词

-

向作者/读者索取更多资源

Single molecule fluorescence resonance energy transfer (FRET) experiments are a powerful and versatile tool for studying conformational motions of single biomolecules. However, the small number of recorded photons typically limits the achieved time resolution. We develop a maximum likelihood theory that uses the full information of the recorded photon arrival times to reconstruct nanometer distance trajectories. In contrast to the conventional, intensity-based approach, our maximum likelihood approach does not suffer from biased a priori distance distributions. Furthermore, by providing probability distributions for the distance, the theory also yields rigorous error bounds. Applied to a burst of 230 photons obtained from a FRET dye pair site-specifically linked to the neural fusion protein syntaxin-1a, the theory enables one to distinguish time-resolved details of millisecond fluctuations from shot noise. From cross validation, an effective diffusion coefficient is also determined from the FRET data. (C) 2003 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据