4.8 Article

Calcium-dependent molecular spring elements in the giant protein titin

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.2235652100

关键词

-

资金

  1. NHLBI NIH HHS [R01 HL061497, R01 HL062881, HL61497, HL62881] Funding Source: Medline

向作者/读者索取更多资源

Titin (also known as connectin) is a giant protein with a wide range of cellular functions, including providing muscle cells with elasticity. Its physiological extension is largely derived from the PEVK segment, rich in proline (P), glutamate (E), valine (V), and lysine (K) residues. We studied recombinant PEVK molecules containing the two conserved elements: approximate to28-residue PEVK repeats and E-rich motifs. Single molecule experiments revealed that calcium-induced conformational changes reduce the bending rigidity of the PEVK fragments, and site-directed mutagenesis identified four glutamate residues in the E-rich motif that was studied (exon 129), as critical for this process. Experiments with muscle fibers showed that titin-based tension is calcium responsive. We propose that the PEVK segment contains E-rich motifs that render titin a calcium-dependent molecular spring that adapts to the physiological state of the cell.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据