4.7 Article

Role of diatoms in regulating the ocean's silicon cycle

期刊

GLOBAL BIOGEOCHEMICAL CYCLES
卷 17, 期 4, 页码 -

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2002GB002018

关键词

diatoms; silicic acid; ecosystem model; competition; homeostasis

向作者/读者索取更多资源

Among phytoplankton the diatoms are strong competitors and contribute significantly to total global primary production. Aspects of their life history, notably their high sinking rates, make them important to the export flux of carbon into the ocean interior. Unlike the majority of other phytoplankton, they utilize silicic acid (=silicate) to construct their cell walls and are controlled by its availability and distribution. Here a simple model is developed to study the relationship between the diatoms and the ocean's silicon cycle. The ecological component of this model pits the slightly superior diatoms against all other algae, with both groups competing for phosphate while the diatoms additionally require silicic acid. The model agrees reasonably with observed distributions of nutrients and with their biogeochemical fluxes. While theoretically superior, the diatoms are held in check by the availability of silicic acid, allowing the persistence and numerical dominance of the other algae. The concentrations of both nutrients are homeostatically controlled by the phytoplankton, and resist perturbations. Analysis finds that primary production in the model is ultimately controlled by phosphate, with silicic acid abundance controlling the fraction of the total produced by diatoms. Sensitivity analyses using more ecologically detailed variants of the model find that these results are generally robust. The model's treatment of the silica pump hypothesis [Dugdale and Wilkerson, 1998] is also examined.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据