4.8 Article

Hyperelasticity governs dynamic fracture at a critical length scale

期刊

NATURE
卷 426, 期 6963, 页码 141-146

出版社

NATURE PORTFOLIO
DOI: 10.1038/nature02096

关键词

-

向作者/读者索取更多资源

The elasticity of a solid can vary depending on its state of deformation. For example, metals will soften and polymers may stiffen as they are deformed to levels approaching failure. It is only when the deformation is infinitesimally small that elastic moduli can be considered constant, and hence the elasticity linear. Yet, many existing theories model fracture using linear elasticity, despite the fact that materials will experience extreme deformations at crack tips. Here we show by large-scale atomistic simulations that the elastic behaviour observed at large strains-hyperelasticity-can play a governing role in the dynamics of fracture, and that linear theory is incapable of fully capturing all fracture phenomena. We introduce the concept of a characteristic length scale for the energy flux near the crack tip, and demonstrate that the local hyperelastic wave speed governs the crack speed when the hyperelastic zone approaches this energy length scale.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据