4.7 Article

[6]-gingerol inhibits nitric oxide synthesis in activated J774.1 mouse macrophages and prevents peroxynitrite-induced oxidation and nitration reactions

期刊

LIFE SCIENCES
卷 73, 期 26, 页码 3427-3437

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.lfs.2003.06.022

关键词

[6]-gingerol; ginger; Zingiber officinale Roscoe; reactive nitrogen species; nitric oxide; peroxynitrite; oxidation; nitration; macrophages

向作者/读者索取更多资源

Reactive nitrogen species (RNS), such as nitric oxide (NO) and its derivatives, e.g. peroxynitrite (ONOO-), have been proposed as being able to influence signal transduction and cause DNA damage, contributing to carcinogenic processes. In this study, the effect of [6]-gingerol, a pungent phenolic compound present in ginger (Zingiber officinale Roscoe), on NO synthesis in lipopolysaccharide (LPS)-activated J774.1 macrophages was tested, and the protective ability of this compound against peroxynitrite-mediated oxidation and nitration reactions were evaluated. [6]-Gingerol exhibited dose-dependent inhibition of NO production and significant reduction of inducible NO synthase (iNOS) in LPS-stimulated J774.1 cells. Moreover, [6]-gingerol effectively suppressed peroxynitrite-induced oxidation of dichlorodihydrofluorescein, oxidative single strand breaks in supercoiled pTZ 18U plasmid DNA, and formation of 3-nitrotyrosine in bovine serum albumin (BSA) and J774.1 cells. Our results indicate that [6]-gingerol is a potent inhibitor of NO synthesis and also an effective protector against peroxynitrite-mediated damage. (C) 2003 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据