4.6 Article

Physics of thermionic dispenser cathode aging

期刊

JOURNAL OF APPLIED PHYSICS
卷 94, 期 10, 页码 6966-6975

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1621728

关键词

-

向作者/读者索取更多资源

A dispenser cathode life model (DCLM) was originally published in 1984. More recent life test data have substantiated the basic physics used in the DCLM. However, re-evaluation of the model with this latest data alters the numerical parameters used in the model. The most important modification is the incorporation of the shape factor, alpha, in the emission equation, so that accurate descriptions of the cathode activity curves (i.e., current versus temperature) can be made as a function of cathode age. The original model was fit only to the cathode current as a function of time for a fixed operating temperature. This revision fits the cathode activity curves as a function of both time and cathode temperature. Variation in cathode current as a function of temperature is quite dependent upon the underlying physics, and gives a better measure of how the internal parameters, such as work function and knee position and knee shape change with time. Knowing these details provides a more accurate measure of how the cathode current at the operating point will change over time. The modification made to the emission equation in this revision incorporates the shape factor, alpha, which is a single number that describes the shape of the cathode activity curves. The shape factor is found to be dependent on time: The knee softens and rounds with age. Even though the shape factor was originally introduced as an empirical factor, I will present a theoretical model for the shape factor that provides some insight into its physical interpretation. This theory will show that it can be related to the thermodynamics of the emitter surface. The re-evaluation of the DCLM, based on the latest life data, and including the theory for the shape factor yields a longer life expectancy for the M-type dispenser cathode then was predicted by the original more conservative life model. The DCLM matches the observed life data more accurately. (C) 2003 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据