4.8 Article

Comparative oxidation and net emissions of methane and selected mon-methane organic compounds in landfill cover soils

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 37, 期 22, 页码 5150-5158

出版社

AMER CHEMICAL SOC
DOI: 10.1021/es034016b

关键词

-

向作者/读者索取更多资源

The surface emissions of methane (CH4) and non-methane organic compounds (NMOCs) were determined at two different areas at a French landfill: a permanently covered and fully vegetated area (40 cm coarse sand + 80 cm of loam) and a temporarily covered area (40 cm of coarse sand). The 37 NMOCs quantified in the landfill gas samples included alkanes (C-1-C-10), alkenes (C-1-C-4), halogenated hydrocarbons (including (H)CFCs), and aromatic hydrocarbons. Both positive and negative CH4 fluxes ranging from -0.01 to 0.008 g m(-2) d(-1) were measured from the permanently covered cell. However, high spatial variation was observed, and a hot spot with a high flux (10 g m(-2) d-1) was identified. A higher CH4 emission occurred from the temporarily covered cell (CH4 flux of 49.9 g m(-2) d(-1)) as compared to the permanently covered cell. The NMOC fluxes from the permanently covered zone were all very small with both positive and negative fluxes in the order of 10(-7) to 10(-5) g m(-2) d(-1). Higher and mainly positive NMOC fluxes in the order of 10(-5) to 10(-4) g m(-2) d(-1) were obtained from the temporarily covered zone. The lower emission from the permanently covered and fully vegetated cell was attributable to the thicker soil layer, which functions as microbial habitat for methanotrophic bacteria. The NMOC oxidation capacity was investigated in soil microcosms incubated with CH4. Maximal oxidation rates for the halogenated aliphatic compounds varied between 0.06 and 8.56 mug (g of soil)(-1) d(-1). Fully substituted hydrocarbons (tetra chloromethane, perchloroethylene, CFC-11, CFC-12, and CFC-113) were not degraded in the presence of CH4 and O-2. Benzene and toluene were rapidly degraded, giving very high maximal oxidation rates (28 and 39,mug (g of soil)(-1) d-1). On the basis of the emission measurements and the batch experiments conducted, a general pattern was observed between emissions and biodegradability of various NMOCs. The emissions mainly consisted of compounds that were not degradable or slowly degradable, while an uptake of easily degradable compounds was registered. As an example, perchloroethylene, trichloromethane, CFC-11, and CFC-12 were emitted, while atmospheric consumption of aromatic hydrocarbons and lower chlorinated hydrocarbons such as vinyl chloride, dichloromethane, and chloromethane was observed. This study demonstrates that landfill soil covers show a significant potential for CH4 oxidation and co-oxidation of NMOCs. Under certain conditions, landfills may even function as sinks for CH4 and selected NMOCs, like aromatic hydrocarbons and lower chlorinated compounds.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据