4.6 Article

Scattering matrix method for modeling acoustic waves in piezoelectric, fluid, and metallic multilayers

期刊

JOURNAL OF APPLIED PHYSICS
卷 94, 期 10, 页码 6923-6931

出版社

AIP Publishing
DOI: 10.1063/1.1621053

关键词

-

向作者/读者索取更多资源

Many ultrasonic devices, among which are surface and bulk acoustic wave devices and ultrasonic transducers, are based on multilayers of heterogeneous materials, i.e., piezoelectrics, dielectrics, metals, and conducting or insulating fluids. We introduce metal and fluid layers and half spaces into a numerically stable scattering matrix model originally proposed for solving the problem of plane wave propagation in piezoelectric and dielectric multilayers. The method is stable for arbitrary thicknesses of the layers. We discuss how the surface Green's functions can be computed for an arbitrary stack of homogeneous materials with plane interfaces. Aditionnally, we set up a backscattering algorithm to compute the distribution of electromechanical fields at any point in the stack. The model is assessed by considering some well-known examples. (C) 2003 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据