4.6 Article

Importance of electronic delocalization on the C-N bond rotation in HCX(NH2) (X = O, NH, CH2, S, and Se)

期刊

JOURNAL OF PHYSICAL CHEMISTRY A
卷 107, 期 46, 页码 10011-10018

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp036560c

关键词

-

向作者/读者索取更多资源

A block-localized wave function method, which in effect can switch off conventional conjugation and hyperconjugation effects, is employed to investigate the origin of the rotational barriers in formamide and its analogues. It is found that the resonance between the pi electrons on the C=X double bond and the nitrogen lone pair significantly stabilizes the planar conformation in HCXNH2 (X = O, NH, CH2, S, and Se). The absolute resonance energy follows the order of formamide < thioformamide < selenoformamide, with predicted vertical resonance energies of -25.5, -35.7, and -37.6 kcal/mol, respectively. The computed vertical resonance energies for X = 0, NH, and CH2 are -25.5, -22.5, and -19.1 kcal/mol, respectively, which follow the decreasing trend of electronegativity. Although the rotational barrier about the C-N bond in vinylamine (4.5 kcal/mol) is much smaller than that of formamide (15.7 kcal/mol), the resonance energy in vinylamine is of the same order as that of formamide (-19.1 versus -25.5 kcal/mol). Consequently, the rotational barrier in formamide cannot be simply regarded as a result of the carbonyl polarization as proposed in early studies. In fact, energy decomposition results reveal that resonance and sigma-framework steric effects are equally important for the estimated difference in rotational barrier. Ab initio valence bond calculations are performed to investigate the electronic delocalization in formamide and its analogues. Examination of the electron density difference between the adiabatic (delocalized) and diabatic (localized) states revealed that the resonance in the planar formamide shifts electron density from nitrogen both to carbon and to oxygen, supporting the conventional resonance model. This is accompanied by the opposing migration of the sigma charge density, making the integrated atomic charges smaller than that expected from pure pi delocalization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据