4.6 Article

Competitive removal of heavy metal ions by cellulose graft copolymers

期刊

JOURNAL OF APPLIED POLYMER SCIENCE
卷 90, 期 8, 页码 2034-2039

出版社

JOHN WILEY & SONS INC
DOI: 10.1002/app.12728

关键词

cellulose; graft copolymers; adsorption; functionalization of polymers; metal removal

向作者/读者索取更多资源

The effect of composition of graft chains of four types cellulose graft copolymers on the competitive removal of Pb2+, Cu2+, and Cd2+ ions from aqueous solution was investigated. The copolymers used were (1) cellulose-g-polyacrylic acid (cellulose-g-pAA) with grafting percentages of 7, 18, and 30%; (2) cellulose-g-p(AA-NMBA) prepared by grafting of AA onto cellulose in the presence of crosslinking agent of NN'-methylene bisacrylamide (NMBA); (3) cellulose-g-p(AA-AASO(3)H) prepared by grafting of a monomer mixture of acrylic acid (AA) and 2-acrylamido-2-methyl propane sulphonic acid (AASO(3)H) containing 10% (in mole) AASO(3)H; and (4) cellulose-g-pAASO(3)H obtained by grafting of AASO(3)H onto cellulose. The concentrations of ions which were kept constant at 4 mmol/L in an aqueous solution of pH 4.5 were equal. Metal ion removal capacities and removal percentages of the copolymers was determined. Metal ion removal capacity of cellulose-g-pAA did not change with the increase in grafting percentages of the copolymer and determined to be 0.27 mmol metal ion/g(copolymer). Although the metal removal rate of cellulose-g-p(AA-NMBA) copolymer was lower than that of cellulose-g-pAA, removal capacities of both copolymers were the same which was equal to 0.24 mmol metal ion/g(copolymer). Cellulose did not remove any ion under the same conditions. In addition, cellulose-g-pAASO(3)H removed practically no ion from the aqueous solution (0.02 mmol metal ion/g(copolymer)). The presence of AASO(3)H in the graft chains of cellulose-g-p(AA-AASO(3)H) created a synergistic effect with respect to metal removal and led to a slight increase in metal ion adsorption capability in comparison to that of cellulose-g-pAA. All types of cellulose copolymers were found to be selective for the removal of Pb2+ over Cu2+ and Cd2+. (C) 2003 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据