4.6 Article

Aqueous stability of mesoporous silica films doped or grafted with aluminum oxide

期刊

LANGMUIR
卷 19, 期 24, 页码 10403-10408

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la035183s

关键词

-

向作者/读者索取更多资源

Surfactant-templated silica thin films are potentially important materials for applications such as chemical sensing. However, a serious limitation for their use in aqueous environments is their poor hydrolytic stability. One convenient method of increasing the resistance of mesoporous silica to water degradation is addition of alumina, either doped into the pore walls during material synthesis or grafted onto the pore surface of preformed mesophases. Here, we compare these two routes to Al-modified mesoporous silica with respect to their effectiveness in decreasing the solubility of thin mesoporous silicate films. Direct synthesis of templated silica films prepared with Al/Si = 1:50 was found to limit film degradation, as measured by changes in film thickness, to less than 15% at near-neutral pH over a 1 week period. In addition to suppressing film dissolution, addition of Al can also cause structural changes in silica films templated with the nonionic surfactant Brij 56 (C16H33(OCH2CH2)(nsimilar to10)OH), including mesophase transformation, a decrease in accessible porosity, and an increase in structural disorder. The solubility behavior of films is also sensitive to their particular mesophase, with 3D phases (cubic, disordered) possessing less internal but more thickness stability than 2D phases (hexagonal), as determined with ellipsometric measurements. Finally, grafting of Al species onto the surface of surfactant-templated silica films also significantly increases aqueous stability, although to a lesser extent than the direct synthesis route.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据