4.8 Article

Enzymatic synthesis of chondroitin and its derivatives catalyzed by hyaluronidase

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 125, 期 47, 页码 14357-14369

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja036584x

关键词

-

向作者/读者索取更多资源

The enzymatic polymerization to provide synthetic chondroitin and its derivatives is reported here, the first example of such in vitro synthesis to date. N-Acetylchondrosine (GlcAbeta(1-->3)GalNAc) oxazoline (1a) and its derivatives (1b-1f) were designed and synthesized as novel transition state analogue substrate monomers for catalysis by hyaluronidase. Hyaluronidase is a hydrolysis enzyme of chondroitin that also catalyzes the formation of repeated glycosidic bonds in in vitro synthesis, rather than in the catabolic direction. Monomers of 2-methyl (1a), 2-ethyl (1b), and 2-vinyl (1f) oxazoline derivatives were polymerized using this enzyme, via ring-opening polyaddition with total control of regioselectivity and stereochemistry. These reactions provided the corresponding synthetic chondroitin (natural type; N-acetyl, 2a) and the derivatives (unnatural type) with N-propionyl (2b) and N-acryloyl (2f) functional groups at the C2 position of all the galactosamine units, in good yields. Monomers of 2-n-propyl (11 c) and 2-isopropyl (1d) oxazoline derivatives were polymerized to produce 2c and 2d in low yield. The 2-phenyl oxazoline derivative (1e) did not afford any enzyme-catalyzed products. M-n values of 2a and 2b reached 4800 and 4000, respectively. The M-n value of 2a corresponds to that of the naturally occurring chondroitin. Thus, hyaluronidase catalysis allows the in vitro production of not only natural type but also the formation of unnatural type chondroitins.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据