4.8 Article

Synthesis of porous emulsion-templated polymers using high internal phase CO2-in-water emulsions

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 125, 期 47, 页码 14473-14481

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja037570u

关键词

-

向作者/读者索取更多资源

Highly porous emulsion-templated materials were synthesized by polymerization of concentrated CO2-in-water (C/W) emulsions. The method does not use any organic solvents, in either the synthesis or purification steps, and no solvent residues are left in the materials. It was found that the emulsion stability is strongly affected both by the nature of the surfactant and by the viscosity of the aqueous continuous phase. By optimizing these parameters, it was possible to generate a highly porous, low-density polyacrylamide material with a pore volume of 5.22 cm(3)/g, an average pore diameter of 9.72 mum, and a bulk density of 0.14 g/cm(3). We have broadened the scope of this approach significantly by identifying inexpensive hydrocarbon surfactants to stabilize the C/W emulsions (e.g., Tween 40) and by developing redox initiation routes that allow the synthesis to be carried out at modest temperatures and pressures (20 degreesC, 65 bar). We have also extended the method to the polymerization of monomers such as hydroxyethyl acrylate, which suggests that it is possible to prepare a range of solvent-free biomaterials by this route.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据