4.1 Article

Evidence that yeast SGS1, DNA2, SRS2, and FOB1 interact to maintain rDNA stability

出版社

ELSEVIER
DOI: 10.1016/j.mrfmmm.2003.08.015

关键词

replication fork barrier; rDNA; 2D gel analysis; telomeres; RecQ helicase; yeast

资金

  1. NIGMS NIH HHS [GM 25508] Funding Source: Medline

向作者/读者索取更多资源

We and others have proposed that faulty processing of arrested replication forks leads to increases in recombination and chromosome instability in Saccharomyces cerevisiae. Now we use the ribosomal DNA locus, which is a good model for all stages of DNA replication, to test this hypothesis. We showed previously that DNA replication pausing at the ribosomal DNA replication fork barrier (RFB) is accompanied by the occurrence of double-strand breaks near the RFB. Both pausing and breakage are elevated in the hypomorphic dna2-2 helicase mutant. Deletion of FOB] suppresses the elevated pausing and DSB formation. Our current work shows that mutation inactivating Sgs1, the yeast RecQ helicase ortholog, also causes accumulation of stalled replication forks and DSBs at the rDNA RFB. Either deletion of FOB1, which suppresses fork blocking and certain types of rDNA recombination, or an increase in SIR2 gene dosage, which suppresses rDNA recombination, reduces the number of forks persisting at the RFB. Although dna2-2 sgs1Delta double mutants are conditionally lethal, they do not show enhanced rDNA defects compared to sgs1Delta alone. However, surprisingly, the dna2-2 sgs1Delta lethality is suppressed by deletion of FOB1. On the other hand, the dna2-2 sgs1Delta lethality is only partially suppressed by deletion of rad51Delta. We propose that the replication-associated defects that we document in the rDNA are characteristic of similar events occurring either stochastically throughout the genome or at other regions where replication forks move slowly or stall, such as telomeres, centromeres, or replication slow zones. (C) 2003 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据