4.6 Article

Extracellular S100A1 protein inhibits apoptosis in ventricular cardiomyocytes via activation of the extracellular signal-regulated protein kinase 1/2 (ERK1/2)

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 278, 期 48, 页码 48404-48412

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M308587200

关键词

-

向作者/读者索取更多资源

S100A1 is a Ca2+-binding protein of the EF-hand type that belongs to the S100 protein family. It is specifically expressed in the myocardium at high levels and is considered to be an important regulator of cardiac contractility. Because the S100A1 protein is released into the extracellular space during ischemic myocardial injury, we examined the cardioprotective potential of the extracellular S100A1 protein on ventricular cardiomyocytes in vitro. In this report we show that extracellularly added S100A1 protein is endocytosed into the endosomal compartment of neonatal ventricular cardiomyocytes via a Ca2+-dependent clathrin-mediated process. S100A1 uptake protects neonatal ventricular cardiomyocytes from 2-deoxyglucose and oxidative stress-induced apoptosis in vitro. S100A1-mediated antiapoptotic effects involve specific activation of the extracellular signal-regulated kinase 1/2 (ERK1/2) prosurvival pathway, including activation of phospholipase C, protein kinase C, mitogen-activated protein kinase kinase 1, and ERK1/2. In contrast, neither transsarcolemmal Ca2+ influx via the L-type channel nor protein kinase A activity seems to take part in the S100A1-mediated signaling pathway. In conclusion, this study provides evidence for the S100A1 protein serving as a novel cardioprotective factor in vitro. These findings warrant speculation that injury-dependent release of the S100A1 protein from cardiomyocytes may serve as an intrinsic mechanism to promote survival of the myocardium in vivo.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据