4.4 Article

Adsorption of organic substances on broken clay surfaces: A quantum chemical study

期刊

JOURNAL OF COMPUTATIONAL CHEMISTRY
卷 24, 期 15, 页码 1853-1863

出版社

JOHN WILEY & SONS INC
DOI: 10.1002/jcc.10342

关键词

clay surfaces; modeling of defect structures; adsorption of organic substances; density functional theory; solvation effects

向作者/读者索取更多资源

Hydrogen-bonded interactions between local defect structures on broken clay surfaces modeled as molecular clusters and the organic molecules acetic acid, acetate, and N-methylacetamide (NMA) have been investigated. Density functional theory and polarized basis sets have been used for the computation of optimized interaction complexes and formation energies. The activity of the defect structures has been characterized as physical or chemical in terms of the strength of the hydrogen bonds formed. Chemical defects lead to significantly enhanced interactions with stronger hydrogen bonds and larger elongation of OH bonds in comparison to the physical defects. The type of interaction with the defect structure significantly influences the planarity of the model peptide bond in NMA. Both cases, enhancement of the planarity by increase of the CN double bond character and strong deviations from planarity, are observed. (C) 2003 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据