4.2 Article

Hydrophobic polar groups tendencies of as a major force in molecular recognition

期刊

BIOPOLYMERS
卷 70, 期 4, 页码 492-496

出版社

WILEY
DOI: 10.1002/bip.10538

关键词

hydration; thermodynamics; polar groups; proteins; nucleic acids

向作者/读者索取更多资源

Proteins and nucleic acids are able to adopt their native conformation and perform their biological role only in the presence of water with which they actively interact in a mutually modifying way. Traditionally, hydrophobic effect has been considered to be the major factor stabilizing biopolymeric structures. However, solvent reorganization around polar groups is an event thermodynamically more unfavorable than solvent reorganization around nonpolar groups. Consequently, burial of polar groups with formation of complementary solute-solute hydrogen bonds out of contact with water is an energetically favorable process that also provides a major force driving macromolecular association and folding. In contrast to nonpolar groups, polar groups may form their complementary intra- or intersolute hydrogen bonds out of contact with water only provided that an appropriate solute structure has been formed with properly positioned hydrogen bond donors and acceptors. Formation of such structures is disfavored entropically and may not be possible due to steric reasons. However, the interior of a folded protein, alpha-helices and beta-sheets, double helical nucleic acid structures, and protein-ligand interfaces all provide rigid matrices where polar groups may form their complementary hydrogen bonds. For these structures, the inward drive of polar groups represents a considerable stabilizing factor. (C) 2003 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据