4.5 Article

Increased insulin receptor signaling and glycogen synthase activity contribute to the synergistic effect of exercise on insulin action

期刊

JOURNAL OF APPLIED PHYSIOLOGY
卷 95, 期 6, 页码 2519-2529

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/japplphysiol.00605.2003

关键词

phosphatidylinositol 3-kinase; Akt

资金

  1. NCRR NIH HHS [RR-01346] Funding Source: Medline
  2. NIDDK NIH HHS [R01 DK-47936] Funding Source: Medline

向作者/读者索取更多资源

The purpose of this study was to determine the factors contributing to the ability of exercise to enhance insulin-stimulated glucose disposal. Sixteen insulin-resistant nondiabetic and seven Type 2 diabetic subjects underwent two hyperinsulinemic (40 mU.m(-2).min(-1)) clamps, once without and once with concomitant exercise at 70% peak O-2 consumption. Exercise was begun at the start of insulin infusion and was performed for 30 min. Biopsies of the vastus lateralis were performed before and after 30 min of insulin infusion (immediately after cessation of exercise). Exercise synergistically increased insulin-stimulated glucose disposal in nondiabetic [from 4.6 +/- 0.4 to 9.5 +/- 0.8 mg.kg fat-free mass (FFM)(-1).min(-1)] and diabetic subjects (from 4.3 +/- 1.0 to 7.9 +/- 0.7 mg.kg FFM-1.min(-1)) subjects. The rate of glucose disposal also was significantly greater in each group after cessation of exercise. Exercise enhanced insulin-stimulated increases in glycogen synthase fractional velocity in control (from 0.07 +/- 0.02 to 0.22 +/- 0.05, P < 0.05) and diabetic (from 0.08 +/- 0.03 to 0.15 +/- 0.03, P < 0.01) subjects. Exercise also enhanced insulin-stimulated glucose storage (glycogen synthesis) in nondiabetic (2.9 +/- 0.9 vs. 4.9 +/- 1.1 mg.kg FFM-1.min(-1)) and diabetic (1.7 +/- 0.5 vs. 4.2 +/- 0.8 mg.kg FFM-1.min(-1)) subjects. Increased glucose storage accounted for the increase in whole body glucose disposal when exercise was performed during insulin stimulation in both groups; effects of exercise were correlated with enhancement of glucose disposal and glucose storage (r = 0.93, P < 0.001). Exercise synergistically enhanced insulin-stimulated insulin receptor substrate 1-associated phosphatidylinositol 3-kinase activity (P < 0.05) and Akt Ser(473) phosphorylation (P < 0.05) in nondiabetic subjects but had little effect in diabetic subjects. The data indicate that exercise, performed in conjunction with insulin infusion, synergistically increases insulin-stimulated glucose disposal compared with insulin alone. In nondiabetic and diabetic subjects, increased glycogen synthase activation is likely to be involved, in part, in this effect. In nondiabetic, but not diabetic, subjects, exercise-induced enhancement of insulin stimulation of the phosphatidylinositol 3-kinase pathway is also likely to be involved in the exercise-induced synergistic enhancement of glucose disposal.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据