4.2 Article

Analysis of a triangulation based approach for specimen generation for discrete element simulations

期刊

GRANULAR MATTER
卷 5, 期 3, 页码 135-145

出版社

SPRINGER-VERLAG
DOI: 10.1007/s10035-003-0145-7

关键词

discrete element; granular materials; specimen generation

向作者/读者索取更多资源

Discrete element methods are emerging as useful numerical analysis tools for engineers concerned with granular materials such as soil, food grains, or pharmaceutical powders. Obviously, the first step in a discrete element simulation is the generation of the geometry of the system of interest. The system geometry is defined by the boundary conditions as well as the shape characteristics (including size) and initial coordinates of the particles in the system. While a variety of specimen generation methods for particulate materials have been developed, there is no uniform agreement on the optimum specimen generation approach. This paper proposes a new triangulation based approach that can easily be implemented in two or three dimensions. The concept of this approach (in two dimensions) is to triangulate a system of points within the domain of interest, creating a mesh of triangles. Then the particles are inserted as the incircles of these triangles. Extension to three dimensions using a mesh of tetrahedra and inserting the inspheres is relatively trivial. The major advantages of this approach include the relative simplicity of the algorithm and the small computational cost associated with the preparation of an initial particle assembly. The sensitivity of the characteristics of the particulate material that is generated to the topology of the triangular mesh used is explored. The approach is compared with other currently used methods in both two and three dimensions. These comparisons indicate that while this approach can successfully generate relatively dense two-dimensional particle assemblies, the three- dimensional implementation is less effective at generating dense systems than other available approaches.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据