4.6 Article

Training a neural network with a canopy reflectance model to estimate crop leaf area index

期刊

INTERNATIONAL JOURNAL OF REMOTE SENSING
卷 24, 期 23, 页码 4891-4905

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/0143116031000070319

关键词

-

向作者/读者索取更多资源

This paper outlines the strategies available for estimating the biophysical properties of crop canopies from remotely sensed data. Spectral reflectance and biophysical data were obtained over 132 plots of sugar beet ( Beta vulgaris L.) and in the first part of the paper the strength of the relationships between vegetation indices (VI) and leaf area index (LAI) are examined. In the second part, an approach is tested in which a canopy reflectance model is used to generate simulated spectra for a wide range of biophysical conditions and these data are used to train an artificial neural network (ANN). The advantage of the second approach is that a priori knowledge of the measurement conditions including soil reflectance, canopy architecture and solar position can be included explicitly in the modelling. The results show that the estimation of sugar beet LAI using a trained neural network is more reliable than the use of VI and has the potential to replace the use of VI for operational applications. The use of a priori data on the variation in soil spectral reflectance gave rise to a small increase in LAI estimation accuracy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据