4.5 Article Proceedings Paper

High-Tc and low-Tc dc SQUID electronics

期刊

SUPERCONDUCTOR SCIENCE & TECHNOLOGY
卷 16, 期 12, 页码 1320-1336

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0953-2048/16/12/002

关键词

-

向作者/读者索取更多资源

Superconducting quantum interference devices (SQUIDs) are commonly operated in a flux-locked loop (FLL). The SQUID electronics amplifies the small SQUID signal to an acceptable level without adding noise, and it linearizes the transfer function of the SQUID in order to provide sufficient dynamic range. In this paper, the fundamentals of SQUID readout are reviewed including a discussion of preamplifier noise. The basic FLL concepts, direct readout and flux modulation readout, are discussed both with dc bias and bias reversal. Alternative readout concepts such as additional positive feedback (APF), two-stage SQUIDs, SQUID series arrays, relaxation oscillation SQUIDs and digital SQUIDS are briefly described. The FLL dynamics are discussed on the basis of a simple model with finite loop delay. It is shown that with optimized SQUID electronics a system bandwidth of approximate to18 MHz and a corresponding slew rate of approximate to18 MHz are possible. A novel FLL scheme involving a Smith predictor is presented which allows one to increase the FLL bandwidth to about 100 MHz. The theoretical predictions are experimentally checked using a high-speed SQUID electronics prototype with a small-signal bandwidth of 300 MHz. Methods for increasing the dynamic range of SQUID systems are described: flux-quanta counting and dynamic field compensation (DFC). With DFC, the residual magnetic field at the SQUID can be kept close to zero even if the device is moved in the Earth's field. Therefore, the noise level of a high-T-c magnetometer measured inside a magnetically shielded room (60 fT Hz(-1/2) with a 1/f comer at 2 Hz) remained unchanged after moving the device in the magnetic field outside the room (60 AT dc plus 0.8 muT peak-to-peak power line interference).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据