4.5 Article

Modeling soluble gas exchange in the airways and alveoli

期刊

ANNALS OF BIOMEDICAL ENGINEERING
卷 31, 期 11, 页码 1402-1422

出版社

SPRINGER
DOI: 10.1114/1.1630600

关键词

mathematical model; bronchial circulation; inert gas

资金

  1. NHLBI NIH HHS [HL24163] Funding Source: Medline

向作者/读者索取更多资源

A mathematical model of heat, water and soluble gas exchange in the airways and alveoli was used to predict the location of soluble gas exchange in the lung. A previously published model of heat, water and soluble gas exchange in the airways was improved by incorporating anatomical data on the airway wall to better describe the bronchial circulation and expanding the model to include a time varying description of soluble gas concentration in the alveoli. Next, the model was validated using two experimental data sets from the literature: (1) ethanol expirograms and (2) the uptake of seven soluble gases. Then, the model simulated the excretion of ten soluble gases whose blood:air partition coefficient (lambda(b:a)), a measure of blood solubility, ranged over S orders of magnitude. We found that gases with lambda(b:a) < 10 exchange almost solely in the alveoli and gases with lambda(b:a) > 100 exchange almost exclusively in the airways. Gases with lambda(b:a) between 10 and 100 have significant interaction with the airways and alveoli. These results suggest that the airways play a larger role in pulmonary gas exchange than previously assumed and may require a reevaluation of pulmonary tests that involve exhaled samples of gases with lambda(b:a) > 10. (C) 2003 Biomedical Engineering Society.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据