4.7 Review

The plant glutathione transferase gene family: genomic structure, functions, expression and evolution

期刊

PHYSIOLOGIA PLANTARUM
卷 119, 期 4, 页码 469-479

出版社

WILEY
DOI: 10.1046/j.1399-3054.2003.00183.x

关键词

-

向作者/读者索取更多资源

Glutathione transferases (GSTs) are ubiquitous, multifunctional proteins encoded by large gene families. In different plant species this gene family is comprised of 25-60 members, that can be grouped into six classes on the basis of sequence identity, gene organization and active site residues in the protein. The Phi and Tau classes are the most represented and are plant specific, while Zeta and Theta GSTs are found also in animals. Despite pronounced sequence and functional diversification, GSTs have maintained a highly conserved three-dimensional structure through evolution. Most GSTs are cytosolic and active as dimers, performing diverse catalytic as well as non-catalytic roles in detoxification of xenobiotics, prevention of oxidative damage and endogenous metabolism. Among their catalytic activities are the conjugation of electrophilic substrates to glutathione, glutathione-dependent isomerizations and reductions of toxic organic hydroperoxides. Their main non-catalytic role is as hormone and flavonoid ligandins. GST genes are predominantly organized in clusters non-randomly distributed in the genome. Phylogenetic studies indicate that plant GSTs have mainly evolved after the divergence of plants, the two prevalent Phi and Tau classes being the result of recent, multiple duplication events.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据