4.0 Article

Effects of fenfluramine and antidepressants on protein kinase c activity in rat cortical synaptoneurosomes

期刊

SYNAPSE
卷 50, 期 3, 页码 212-222

出版社

WILEY
DOI: 10.1002/syn.10262

关键词

fenfluramine; serotonin; protein kinase C; transport and uptake inhibitors

向作者/读者索取更多资源

Fenfluramine releases serotonin (5-HT) via the 5-HT transporter (SERT). Previous work has shown that amphetamine increases particulate protein kinase C (PKC) activity in striatal synaptoneurosomes. The increased PKC activity is linked to the outward transport of dopamine, and when release is diminished, the inward transport of amphetamine inhibits PKC instead. Since there is homology among monoamine transporters, this study was undertaken to determine if D-fenfluramine has similar effects on PKC. The role of 5-HT receptors and endogenous 5-HT were also examined. Naive rats and rats pretreated with p-chlorophenylalanine (PCPA), a 5-HT synthesis inhibitor, were sacrificed. Cortical synaptoneurosomes were prepared and incubated with fenfluramine. PKC activity was determined by thiophosphorylation of endogenous substrates. It was found that 5-HT, D/L-fenfluramine, and D-fenfluramine increased PKC activity in a time- and dose-dependent manner. The 5-HT-mediated increase in PKC activity was attenuated by pretreatment with the 5-HT, antagonist ketanserin, but not with the SERT inhibitor fluoxetine. The D-fenfluramine-induced increase in PKC activity was completely prevented, however, by pretreatment with SERT inhibitors and partially with ketanserin. It was also attenuated by pretreatment with PCPA, resulting in a dose-dependent inhibition of PKC instead. Thus, when 5-HT release was diminished the uptake of D-fenfluramine inhibited PKC. Similar effects have been observed with amphetamine. Unlike D-fenfluramine, the D/L-fenfluramine-induced increase in PKC activity was partially resistant to PCPA pretreatment but was attenuated with bupropion, a dopamine transporter (DAT) inhibitor. SERT inhibitors (sertraline, paroxetine, citalopram, and fluoxetine) also increased PKC activity. Nefazodone and bupropion increased PKC activity, but mirtazapine was relatively inactive. The SERT inhibitor-induced increase in PKC was unaffected by pretreatment with PCPA but was inhibited by calcium. Similar effects on PKC activity have been observed with DAT inhibitors. These results, showing that D-fenfluramine altered PKC activity similar to D-amphetamine, suggest that the topographic homology between DAT and SERT may extend to their effects on PKC activity. (C) 2003 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据