4.7 Article

Multiple integrin-ligand interactions synergize in shear-resistant platelet adhesion at sites of arterial injury in vivo

期刊

BLOOD
卷 102, 期 12, 页码 4021-4027

出版社

AMER SOC HEMATOLOGY
DOI: 10.1182/blood-2003-05-1391

关键词

-

向作者/读者索取更多资源

Damage to the integrity of the vessel wall results in exposure of the subendothelial extracellular matrix (ECM), which triggers integrin-dependent adhesion and aggregation of platelets. The role of platelet beta1 integrins in these processes remains mostly undefined. Here, we demonstrate by intravital fluorescence microscopy that platelet adhesion and thrombus growth on the exposed ECM of the injured carotid artery is not significantly altered in alpha2-null mice and even in mice with a Cre/IoxP-mediated loss of all beta1 integrins on their platelets. In contrast, inhibition of alphaIIbbeta3 integrin on platelets in wild-type mice blocked aggregate formation and reduced platelet adhesion by 60.0%. Strikingly, alphaIIbbeta3 inhibition had a comparable effect in alpha2-null mice, demonstrating that other receptors mediate shear-resistant adhesion in the absence of functional alpha2beta1 and alphaIIbbeta3. These were identified to be alpha5beta1 and/or alpha6beta1 as alphaIIbbeta3 inhibition abrogated platelet adhesion in beta1-null mice. We conclude that shear-resistant platelet adhesion on the injured vessel wall in vivo is a highly integrated process involving multiple integrin-ligand interactions, none of which by itself is essential. (C) 2003 by The American Society of Hematology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据