4.7 Article

Distinct regimes of elastic response and deformation modes of cross-linked cytoskeletal and semiflexible polymer networks

期刊

PHYSICAL REVIEW E
卷 68, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.68.061907

关键词

-

向作者/读者索取更多资源

Semiflexible polymers such as filamentous actin (F-actin) play a vital role in the mechanical behavior of cells, yet the basic properties of cross-linked F-actin networks remain poorly understood. To address this issue, we have performed numerical studies of the linear response of homogeneous and isotropic two-dimensional networks subject to an applied strain at zero temperature. The elastic moduli are found to vanish for network densities at a rigidity percolation threshold. For higher densities, two regimes are observed: one in which the deformation is predominately affine and the filaments stretch and compress; and a second in which bending modes dominate. We identify a dimensionless scalar quantity, being a combination of the material length scales, that specifies to which regime a given network belongs. A scaling argument is presented that approximately agrees with this crossover variable. By a direct geometric measure, we also confirm that the degree of affinity under strain correlates with the distinct elastic regimes. We discuss the implications of our findings and suggest possible directions for future investigations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据