4.8 Article

Electronic coupling in InP nanoparticle arrays

向作者/读者索取更多资源

Arrays and lattices formed from nanoparticles (NPs) present unique opportunities for new optoelectronic materials whose properties can be tuned by controlling the size of the individual NPs and their interparticle separation to effect strong inter-NP electronic coupling. Characterization of the interdot coupling as a function of interdot distance is essential. Using time-resolved THz spectroscopy, we report a six-fold increase in the transient photoconductivity in disordered arrays of 3.2 nm diameter InP NPs separated by 0.9 nm compared to arrays with 1.8 nm separation. Photoconductivity in the arrays is compared to that of isolated NPs and InP epilayers. The epilayer samples exhibit bulk transport behavior while the NP samples do not.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据