4.6 Article Proceedings Paper

Mesozoic thermal evolution of the southern African mantle lithosphere

期刊

LITHOS
卷 71, 期 2-4, 页码 273-287

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/S0024-4937(03)00117-8

关键词

lithosphere; mantle; craton

向作者/读者索取更多资源

The thermal structure of Archean and Proterozoic lithospheric terranes in southern Africa during the Mesozoic was evaluated by thermobarometry of mantle peridotite xenoliths erupted in alkaline magmas between 180 and 60 Ma. For cratonic xenoliths, the presence of a 150-200 degreesC isobaric temperature range at 5-6 GPa confirms original interpretations of a conductive geotherm, which is perturbed at depth, and therefore does not record steady state lithospheric mantle structure. Xenoliths from both Archean and Proterozoic terranes record conductive limb temperatures characteristic of a cratonic geotherm similar to 40 mW m(-2)), indicating cooling of Proterozoic mantle following the last major tectonothermal event in the region at similar to1 Ga and the probability of thick off-craton lithosphere capable of hosting diamond. This inference is supported by U-Pb thermochronology of lower crustal xenoliths [Schmitz and Bowring, 2003. Contrib. Mineral. Petrol. 144, 592-618]. The entire region then suffered a protracted regional heating event in the Mesozoic, affecting both mantle and lower crust. In the mantle, the event is recorded at similar to 150 Mato the southeast of the craton, propagating to the west by 108-74 Ma, the craton interior by 85-90 Ma and the far southwest and northwest by 65-70 Ma. The heating penetrated to shallower levels in the off-craton areas than on the craton, and is more apparent on the southern margin of the craton than in its western interior. The focus and spatial progression mimic inferred patterns of plume activity and supercontinent breakup 30-100 Ma earlier and are probably connected. Contrasting thermal profiles from Archean and Proterozoic mantle result from penetration to shallower levels of the Proterozoic lithosphere by heat transporting magmas. Extent of penetration is related not to original lithospheric thickness, but to its more fertile character and the presence of structurally weak zones of old tectonism. The present day distribution of surface heat flow in southern Africa is related to this dynamic event and is not a direct reflection of the pre-existing lithospheric architecture. (C) 2003 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据