4.5 Article

Specificity of insulin-like growth factor I and insulin on Shc phosphorylation and Grb2 recruitment in caveolae

期刊

ENDOCRINOLOGY
卷 144, 期 12, 页码 5497-5503

出版社

ENDOCRINE SOC
DOI: 10.1210/en.2003-0417

关键词

-

向作者/读者索取更多资源

Caveolae are lipid raft microdomains that regulate endocytosis and signal transduction. IGF-I receptor (IGF-IR) localizes in caveolae and tyrosine phosphorylates caveolin 1, supporting a role for these subcellular regions in the compartmentalization of IGF-I signaling. Src homology 2/alpha-collagen related protein (Shc) is the main mediator of IGF-I mitogenic action, coupling IGF-IR phosphorylation to Ras-MAPK activation. Here we show that IGF-I induces Shc tyrosine phosphorylation in the caveolae with a time course significantly different from that observed in the nonraft cellular fractions. In the same time, IGF-I recruits growth factor receptor bound protein 2 (Grb2) to caveolae and activates p42/p44 MAPKs in these microdomains. Src family kinases regulate IGF-I action through an Shc-dependent mechanism. In R-IGF-IRWT cells, IGF-I causes Fyn enrichment in the caveolae with a time course consistent with Shc phosphorylation and Grb2 recruitment in these regions. Finally, we have observed that after IGF-I stimulation, IGF-IR and Fyn colocalize in lipid raft caveolin 1-enriched microdomains. As insulin and IGF-I share common substrates, the effect of insulin on these cellular processes was measured. Here we show that insulin also induces Shc phosphorylation and Grb2 recruitment to caveolae, but with a significantly different time course compared with IGF-I. Our results suggest that 1) IGF-I causes the colocalization of signaling proteins in caveolae through a phosphorylation-regulated mechanism; and 2) the time course of phosphorylation and recruitment of substrates in caveolae by insulin receptor and IGF-IR could determine the specific actions of these receptors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据