4.6 Article

Biochemical diversity among the 1-amino-cyclopropane-1-carboxylate synthase isozymes encoded by the Arabidopsis gene family

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 278, 期 49, 页码 49102-49112

出版社

ELSEVIER
DOI: 10.1074/jbc.M308297200

关键词

-

向作者/读者索取更多资源

1-Amino-cyclopropane-1-carboxylate synthase (ACS, EC 4.4.1.14) is the key enzyme in the ethylene biosynthetic pathway in plants. The completion of the Arabidopsis genome sequence revealed the presence of twelve putative ACS genes, ACS1-12, dispersed among five chromosomes. ACS1-5 have been previously characterized. However, ACS1 is enzymatically inactive whereas ACS3 is a pseudogene. Complementation analysis with the Escherichia coli aminotransferase mutant DL39 shows that ACS10 and 12 encode aminotransferases. The remaining eight genes are authentic ACS genes and together with ACS1 constitute the Arabidopsis ACS gene family. All genes, except ACS3, are transcriptionally active and differentially expressed during Arabidopsis growth and development. IAA induces all ACS genes, except ACS7 and ACS9; CHX enhances the expression of all functional ACS genes. The ACS genes were expressed in E. coli, purified to homogeneity by affinity chromatography, and biochemically characterized. The quality of the recombinant proteins was verified by N-terminal amino acid sequence and MALDI-TOF mass spectrometry. The analysis shows that all ACS isozymes function as dimers and have an optimum pH, ranging between 7.3 and 8.2. Their K-m values for AdoMet range from 8.3 to 45 muM, whereas their k(cat) values vary from 0.19 to 4.82 s(-1) per monomer. Their K-i values for AVG and sinefungin vary from 0.019 to 0.80 muM and 0.15 to 12 muM, respectively. The results indicate that the Arabidopsis ACS isozymes are biochemically distinct. It is proposed that biochemically diverse ACS isozymes function in unique cellular environments for the biosynthesis of C2H4, permitting the signaling molecule to exert its unique effects in a tissue- or cell-specific fashion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据