4.6 Article

The N-terminal zinc binding domain of ClpX is a dimerization domain that modulates the chaperone function

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 278, 期 49, 页码 48981-48990

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M307825200

关键词

-

向作者/读者索取更多资源

Clp ATPases are unique chaperones that promote protein unfolding and subsequent degradation by proteases. The mechanism by which this occurs is poorly understood. Here we demonstrate that the N-terminal domain of ClpX is a C4-type zinc binding domain (ZBD) involved in substrate recognition. ZBD forms a very stable dimer that is essential for promoting the degradation of some typical ClpXP substrates such as lambdaO and MuA but not GFP-SsrA. Furthermore, experiments indicate that ZBD contains a primary binding site for the lambdaO substrate and for the cofactor SspB. Removal of ZBD from the ClpX sequence renders the ATPase activity of ClpX largely insensitive to the presence of ClpP, substrates, or the SspB cofactor. All these results indicate that ZBD plays an important role in the ClpX mechanism of function and that ATP binding and/or hydrolysis drives a conformational change in ClpX involving ZBD.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据