4.8 Article

The molecular basis for the high photosensitivity of rhodopsin

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.2536769100

关键词

photoisomerization; FNMR; protein perturbation

向作者/读者索取更多资源

Based on structural information derived from the F NMR data of labeled rhodopsins, rhodopsin crystal structure, and excited-state properties of model polyenes, We propose a molecular mechanism that accounts specifically for the causes of the well-known enhanced photoreactivity of rhodopsin (increased rates and quantum yield of isomerization). It involves the key features of close proximity of C-187 to H-12 and chromophore bond lengthening upon light absorption. The resultant sudden punch to H-12 triggers dual processes of decay of the Franck-Condon-excited rhodopsin, a productive directed photoisomerization and a nonproductive decay returning to the ground state as two separate molecular pathways [based on real-time fluorescence results of Chosrowjan, H., Mataga, N., Shibata, Y., Tachibanaki, S., Kandori, H., Shichida, Y., Okada, T. & Kouyama, T. (1998) J. Am. Chem. Soc. 120, 97069707]. The two processes are controlled by the local protein structure: an empty space provided by the intradiscal loop connecting transmembrane helices 4 and 5 and a protein wall composed of amino acid units in transmembrane 3. Suggestions, involving retinal analogs and rhodopsin mutants, to improve the unusually high photosensitivity of rhodopsin are proposed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据