4.7 Article

Thermonuclear stability of material accreting onto a neutron star

期刊

ASTROPHYSICAL JOURNAL
卷 599, 期 1, 页码 419-449

出版社

IOP PUBLISHING LTD
DOI: 10.1086/379211

关键词

accretion, accretion disks; stars : neutron; X-rays : binaries; X-rays : bursts

向作者/读者索取更多资源

We present a global linear stability analysis of nuclear fuel accumulating on the surface of an accreting neutron star, and we identify the conditions under which thermonuclear bursts are triggered. The analysis reproduces all the recognized regimes of hydrogen and helium bursts and in addition shows that at high accretion rates, near the limit of stable burning, there is a regime of delayed mixed bursts that is distinct from the more usual prompt mixedbursts. In delayed mixed bursts, a large fraction of the fuel is burned stably before the burst is triggered. Bursts thus have longer recurrence times but at the same time have somewhat smaller fluences. Therefore, the parameter a, which measures the ratio of the energy released via accretion to that generated through nuclear reactions in the burst, is up to an order of magnitude larger than for prompt bursts. This increase in alpha near the threshold of stable burning has been seen in observations. We explore a wide range of mass accretion rates, neutron star radii, and core temperatures and calculate a variety of burst properties. From a preliminary comparison with data, we suggest that bursting neutron stars may have hot cores, with T-core greater than or similar to 10(7.5) K, consistent with interior cooling via the modified Urca or similar low-efficiency process, rather than T-core similar to 10(7) K, as expected for the direct Urca process. There is also an indication that neutron star radii are somewhat small, less than or similar to10 km. Both of these conclusions need to be confirmed by comparing more careful calculations with better data.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据