4.8 Article

Coupled spatial variations in precipitation and long-term erosion rates across the Washington Cascades

期刊

NATURE
卷 426, 期 6967, 页码 645-647

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nature02111

关键词

-

向作者/读者索取更多资源

Past studies of tectonically active mountain ranges have suggested strong coupling and feedbacks between climate, tectonics and topography(1 - 5). For example, rock uplift generates topographic relief, thereby enhancing precipitation, which focuses erosion and in turn influences rates and spatial patterns of further rock uplift. Although theoretical links between climate, erosion and uplift have received much attention(2,6 - 10), few studies have shown convincing correlations between observable indices of these processes on mountain- range scales(11,12). Here we show that strongly varying long- term(> 10(6) - 10(7) yr) erosion rates inferred from apatite ( U - Th)/ He cooling ages across the Cascades mountains of Washington state closely track modern mean annual precipitation rates. Erosion and precipitation rates vary over an order of magnitude across the range with maxima of 0.33 mm yr(-1) and 3.5 m yr(-1), respectively, with both maxima located 50 km west ( windward) of the topographic crest of the range. These data demonstrate a strong coupling between precipitation and long- term erosion rates on the mountain- range scale. If the range is currently in topographic steady state, rock uplift on the west flank is three to ten times faster than elsewhere in the range, possibly in response to climatically focused erosion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据