4.6 Article

Modeling and simulation of polycrystalline ZnO thin-film transistors

期刊

JOURNAL OF APPLIED PHYSICS
卷 94, 期 12, 页码 7768-7777

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1628834

关键词

-

向作者/读者索取更多资源

Thin-film transistors (TFTs) made of transparent channel semiconductors such as ZnO are of great technological importance because their insensitivity to visible light makes device structures simple. In fact, there have been several demonstrations of ZnO TFTs achieving reasonably good field effect mobilities of 1-10 cm2/V s, but the overall performance of ZnO TFTs has not been satisfactory, probably due to the presence of dense grain boundaries. We modeled grain boundaries in ZnO TFTs and performed simulation of a ZnO TFT by using a two-dimensional device simulator in order to determine the grain boundary effects on device performance. Polycrystalline ZnO TFT modeling was started by considering a single grain boundary in the middle of the TFT channel, formulated with a Gaussian defect distribution localized in the grain boundary. A double Schottky barrier was formed in the grain boundary, and its barrier height was analyzed as a function of defect density and gate bias. The simulation was extended to TFTs with many grain boundaries to quantitatively analyze the potential profiles that developed along the channel. One of the main differences between a polycrystalline ZnO TFT and a polycrystalline Si TFT is that the much smaller nanoscaled grains in a polycrystalline ZnO TFT induces a strong overlap of the double Schottky barriers with a higher activation energy in the crystallite and a lower barrier potential in the grain boundary at subthreshold or off-state region of its transfer characteristics. Through the simulation, we were able to estimate the density of total trap states localized in the grain boundaries for polycrystalline ZnO TFT by determining the apparent mobility and grain size in the device. (C) 2003 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据