4.5 Review

Virtual and real brain tumors: using mathematical modeling' to quantify glioma growth and invasion

期刊

JOURNAL OF THE NEUROLOGICAL SCIENCES
卷 216, 期 1, 页码 1-10

出版社

ELSEVIER
DOI: 10.1016/j.jns.2003.06.001

关键词

glioma; mathematical model; tumor invasion; tumor growth

资金

  1. NICHD NIH HHS [HD-02274] Funding Source: Medline

向作者/读者索取更多资源

Over the last 10 years increasingly complex mathematical models of cancerous growths have been developed, especially on solid tumors, in which growth primarily comes from cellular proliferation. The invasiveness of gliomas, however, requires a change in the concept to include cellular motility in addition to proliferative growth. In this article we review some of the recent developments in mathematical modeling of gliomas. We begin with a model of untreated gliomas and continue with models of polyclonal gliomas following chemotherapy or surgical resection. From relatively simple assumptions involving homogeneous brain tissue bounded by a few gross anatomical landmarks (ventricles and skull) the models have recently been expanded to include heterogeneous brain tissue with different motilities of glioma cells in grey and white matter on a geometrically complex brain domain, including sulcal boundaries, with a resolution of 1 mm(3) voxels. We conclude that the velocity of expansion is linear with time and varies about 10-fold, from about 4 mm/year for low-grade gliomas to about 3 mm/month for high-grade ones. (C) 2003 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据