4.6 Article

Insight into functional aspects of Stt3p, a subunit of the oligosaccharyl transferase - Evidence for interaction of the N-terminal domain of Stt3p with the protein kinase C cascade

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 278, 期 51, 页码 51441-51447

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M310456200

关键词

-

资金

  1. NIGMS NIH HHS [GM33185] Funding Source: Medline

向作者/读者索取更多资源

Over a decade ago, the gene STT3 was identified in a staurosporine and temperature sensitivity screen of yeast. Subsequently the product of this gene was shown to be a subunit of the endoplasmic reticulum-localized oligosaccharyl transferase (OT) complex. Although stt3 mutants are known to be staurosporine-sensitive, we found that mutants of other OT subunits (except ost4Delta) are staurosporine-resistant, which indicates that this phenotype of stt3 mutants is not simply a consequence of their defect in glycosylation, as previously speculated. Staurosporine sensitivity was found to be an allele-specific phenotype restricted to cells harboring mutations in highly conserved residues in the N-terminal domain of the STT3 protein. Cells bearing mutations in one of the cytosolic-oriented loops (amino acids 158 168) in the N terminus of Stt3p were found to be specifically susceptible to staurosporine. Staurosporine is a specific inhibitor of Pkc1p, and a genetic link had previously been suggested between PKC1 and STT3. It is known that overexpression of PKC1 suppresses the staurosporine sensitivity of the stt3 mutants in an allele-specific manner, which is typical of mutants of Pkc1p cascade. It has been shown that the pkc1 null mutant exhibits lowered OT activity. Our results combined with these previous observations indicate that the N-terminal domain of Stt3p may interact with members of the Pkc1p cascade and consequently mutations in this domain result in staurosporine sensitivity. We further speculate that the Pkc1p regulates OT activity through the N-terminal domain of Stt3p, the C-terminal domain of which possesses the recognition and/or catalytic site of the OT complex.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据