4.8 Article

Phylogenetic biochemical evidence for sterol synthesis in the bacterium Gemmata obsuriglobus

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.2536559100

关键词

-

向作者/读者索取更多资源

Sterol biosynthesis is viewed primarily as a eukaryotic process, and the frequency of its occurrence in bacteria has long been a subject of controversy. Two enzymes, squalene monooxygenase and oxidosqualene cyclase, are the minimum necessary for initial biosynthesis of sterols from squalene. In this work; 19 protein gene sequences for eukaryotic squalene monooxygenase and 12 protein gene sequences for eukaryotic oxidosqualene cyclase were compared with all available complete and partial prokaryotic genomes. The only unequivocal matches for a sterol biosynthetic pathway were in the proteobacterium, Methylococcus capsulatus, in which sterol biosynthesis is known, and in the planctomycete, Gemmata obscuriglobus. The latter species contains the most abbreviated sterol pathway yet identified in any organism. Analysis shows that the major sterols in Gemmata are lanosterol and its uncommon isomer, parkeol. There are no subsequent modifications of these products. In bacteria, the sterol biosynthesis genes occupy a contiguous coding region and possibly comprise a single operon. Phylogenetic trees constructed for both enzymes show that the sterol pathway in bacteria and eukaryotes has a common ancestry. It is likely that this contiguous reading frame was exchanged between bacteria and early eukaryotes via lateral gene transfer or endosymbiotic events. The primitive sterols produced by Gemmata suggest that this genus could retain the most ancient remnants of the sterol biosynthetic pathway.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据